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RUBIIN AND RICHIARDS COLOR AND MATERIAL CATEGORIES

1. Introduction

The human visual system performs a remarkable feat. The pattern of light that reaches

the eye from a scene is the result of a complex interaction among several factors: the quality

of the illuminant. the geometry of the scene, and the properties of the materials composing

the visible surfaces. Yet somehow these confounded factors are mostly separated in our

perception. We see particular spatial arrangements of objects. These objects appear

bounded by surfaces having properties-color and texture-roughly invariant over a range

of conditions of geometry and illumination. To compute invariant descriptions of the material

properties of surfaces is an important goal of any visual system. Such material descriptors

are useful for object recognition and visual search.

It's commonplace to assume color vision has something to do with capturing the

albedoes of surface ,.iaterials.' But exactly what aspect of the albedo function would serve

a visual system best? Consider the grandiose goal of recovering a material's albedo as a

continuous function of wavelength. Not only is this goal impractical; it is counter to the

aim of finding invariant descriptors. With such an over-zealous representation, unimportant

variations in a surface would prevent its being recognized as a single region, a patch of

one kind of stuff. The perception of the world would be shattered with spectral acuity too

fine; one literally wouldn't be able to see the forest for the trees.

Here we seek a representation of material reflectance in which trivial surface variations

can be overlooked in order to appreciate important similarities.2 At the same time, the

representation must ailow some discrimination among different materials. Below we develop

such a categorical color spae, based on a theoretical solution to the problem of identifying

material changes. A trichromatic system, it will be shown, yields a two-dimensional color

space in which the axes will turn out to represent boundaries between different materials.

The four quadrants of the two dimensional space represent material categories.

2. Spectral Information at Edges

When two image regions arine from different materials in the scene, the transition from

one mateiial to another will ussually bring about an edge in the image. Thus we restrict our

tsealrch for matrial changes to edges. How can we decide whether an edge is due to a

material change?

An edge in the image will usually arise from a single event or state of affairs in

the three dimensional scene (Marr. 1982). The most common edge types are shadows.

The altedo of .i rivi,itirrilil is a tnctir cf w;i,.ier'(th p, ), with range (ii. I). that indicates what

fr •ctzi(ii of ()hottn; (I •r•lled ty t,tiryin ight somr-c.) at eaci wavele•iJth will be. reflected.
"We are not su i ti' ,tiu ,irlny Iwe(Ar,if reformn•aion tm- thrown away We are merely exploring a single

pfbt)lein Other ;r,n Ihri; m'a;ty *( fi•,.i (Jd';,aed , hS ( al information.



RUBIN AND RICHARDS COLOR AND MATERIAL CATEGORIES

(A) Lawful Change (B) Material Changer= F; E...O

Wavelength
Figure -I Graphs of Image intensty versus wavelength. Each curve represents the image intensit

measurable from one image region. A) Fwe graphs of sae shape: a likely lawful change, 0) T0o

graphs of Jillrent shape: a Candid::ate for material change.

highlights, surfare orientation discontinuities, and pigment density changes.3 Alternatively,

an edge may be due to a material change, a discontinuity between two different kinds of

stuff.' Flow can a material change edge be dis•tinguished from other types of edges? Rubin

& Richards (1982) attempted to answer this question. Edges which arise from shadows,

orientation changes and highlights are lawful in the sense that there are equations, that

de;,cribe how im age intensities will change across these edges. By contrast, material .

changes are completely unpredictable; they are arbitrary changes, and as such, can only

be inferred by ruling out, at a given edge, the possibility of any of the above lawful changes.

To infer material changes, we now face Cie awkward prospect o~f having to reject,

one by one, each of the lawful changes. Perhaps there is some method of rejecting all of

those edges on masse. Fortunately, there is a simple ordinal rule common to all the edges

formed by lawful processes: if the intensity at one wavelength decreases across a lawful

edge (shadows, highlights, and so on) then the intensity must also decrease at all other

wavelengths taken across the same edge (Rubin and Richards, 1982). When this condition

is vic,-ated, we say there is a "spectral crosspoin't" across the edge. Spectral crosspoints

imply material changes: a spectral c~rosspoint is illustrated in cig. 2a. The spectral crosspoint

is not the only means of discovering material changes, however. We will show that a second

and indepe~ndent condition holds for each of the lawful processe.s--namely the preservation

of ordinahity of image intonsity across wavelength, A violation of this condition implies a

material chringe.

Surfacef o)riw".tlon cti,.irtP and 5hfl;fd-.v car, co-tcid~e ot ,:ýn vciyej. but this, exception is unimportant
to the ar(;uw(,ntl:i that follow •.' Soo ubin & iIch.ardý;. 19A.2, fo()tnote 16. ...

,VV',( C 0,1,:,(h -r irn 'lt( f.f~ !; to c o' vý,• , ,.• o f s om i-, oe.; c.,ra lly r it w r~r il ,.m t~e dJ d in q m a; te ria l (e .q . c e llu lo s e ) . . • •
mr•'rq~rc ,l,qn •-- v,',th a ý,w(lh, i),t~vivrot (P q., chloro.phyll) A mot,:,al chanr (is t a change in pigment tide,
cy a chawlett inl both pigniv!i an('I ermbte(Jlmq matterial.
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UPul' .AND rUCIARDS COLOR AND MATERIAL CATEGORIES

3. The Opposite Slope Sign Inference

5i. 1 The Lawf ill Ff cesses

Fiqtire la shows, t\r, rrnl~ige intensity graphs of the same shape. Intuitively, the two
graphs. (& !,inid:ir shaipe, arise from meaIsurements taken on either side of a "lawful" edge

typý?. FigureŽ lt) showS tg raphs of different shape. None of the lawful edge types could
have irroduct-cd SUCh Ar distorton, and Intuitively it seems that a material change edge is
the best -~plan'ition Vie now must make explicit what we mean by "same shape". and
then shovv that this definition of spectral shape remains invariant across edges crcatcd by
shadows. chainqes in surface orieýntation, highlights or variations in pigment density--namely
the lawful1 :ondfitions we wvish to reject as material changes.

De.f'rlitnn- Two curves of intensity versus wavelength h ve the same shape if the
ordinal relations of image intensity across wavelength are preserved.

Thus, if l\ (X) and 1v (X) are image intensities as functions of Wavelength measured on botih
sides, X and Y, of an edge. lvx() and Iy(X) have identical 'ordinality if, for all X, and X2,
lx(XI) < I'\)iffI Ir(>I) < Iy(X). Note that two image intensity functions of identical

u ordinality will have local extrema at the same values of wavelength.

Given this ordinal definition of "same shape", Appendix 1 shows that the ordinality
relationship is preserved across all edges arising from the lawful edge types, provided that
the following two conditions hold.

Gray world condition: The average of all the different albedoes in the scene will
be a spectrally flat "gray", so that the diffuse reflected light will have the same
spectral character as the direct.light.

Spectral normalization: The spectral samples of image intensity have been
normalized with respect to the color of the illuminant.

(The need for the second condition, namely spectral normalization, will be eliminated

subsequently.)

3.2 The Opposite Slope Sign Operato r

We now can proceed to test for "same shape" using the ordinality relation. If ordinality
is violated across an edge, then we infer the edge does not arise from one of the "lawful"

3



RUBIN AND RICHARDS COLOR AND MATERIAL CATEGORIES

Independence of Crosspoint and

Opposite Slope Sign

(A) . (B)

'0 0 
00

Ln

92 Mc(D)

Xi X•2 X'1 X2

Wovelength
Figure 2 Graphs of image intensity (ordinate) versus wavelength (abscissa). Two wavelength
samples, A., and X2. are shiown. An inage region yields two samples of intensity, one for each
wavelength, ann is repiesented by the line segment connecting the two sample values, a) & c) Two
examples of (ht: spectral crosspoint (Rubin & Ricnards. 198?). a) & b) rwo examples of the opposite
slope sign condition. This is Ihe m~nimal configuration that shows different ordinalities. Nots that
the crosspoint and opposite slope sign condition are completely independent, since they can occur
together (a), or each can occur alone (b and c), or neither can occur (d).

processes and hence must represent a material change (provided also, of course, that our

grey w rld condition is not violated).5

W at is the simplest way to seek violations of ordinality? A pair of spectral samples

suffices. Let the image intensities on both sides of an edge be measured at wavelengths

X, and X"2 ' If image intensity at X, is greater than that at X2 on one side of the edge, then

the ordin lity condition requires the same relationship hold on the other side. So if the

two sides of the edge do not have greater intensity in the same spectral sample, ordinality

is violate ; the edge cannot be lawful. (Details are given in Appendix 1.) This condition

•It is possible when the grey world aLsumption is wrong, material changes will be inferred from
imrges. This is not entirely bad news; ;f human perception alo goes awry when the grey world
assumption is wolated, then our theory will become more credible as an account of biological visual
systems.

4



RUBIN AND 'ICIIARD5 COLOR AND MATERIAL CATEGORIES

"is called the opposite slope sign condition6. Examples are shown in Fig. 2a and 2b. The

"slope" of the opposite slope sign condition is the slope of the graph of intensity versus

wavelength; it is an evaluation of the sign of the derivative of the spectral image intensity

function, d.

More formally, given two regions X and Y across an edge and intensity samples I

taken at two wavelengths X, and X2, we have the following test for a material change:

Opposite Slope Sign Condition:

(Ix, - lxx,) (hiY - Iy>,,) < 0.

which may be contrasted with the previously derived crosspoint condition (Rubin and

Richards, 1982):

Spectral Crosspoint Condition:

(IxX,, - Iyx,) (lx, - Iyx,) < 0.

i';,ute t,�it -ile tdi CLId iu)Oillt dld tle upposite lope CSigrl cuntiuwuius are cunmpieteey

independent. Figure 2a shows the two occurring together. Each condition can arise alone,

as shown in Figs. 2b and 2c. Finally neither condition is necessary, as shown in Fig. 2d.

"The two conditions are related by a kind of symmetry. The spectral crosspoint must

make two comparisons across an edge (one for each wavelength), and combine them

logically (both comparisons must work out in the correct way). The opposite slope sign

condition must make two comparisons, one within each image region, and then combine

them logically across the edge.

To summarize: the spectral crosspoint-our original means of finding material changes-
has been augmented by a second and independent material change condition: opposite

slope sign. The opposite slope sign condition is the key theoretical result on which we will

base our spectral representation of material types. We choose opposite slope sign rather

than the crosspoi|t, because the opposite slope sign condition tells us something about

each of the two regions that produce it. Namely, one region has positive spectral slope, the

other negative. By contrast, the spectral crosspoint cannot be decomposed into assertions

about the two regions that produce it. In a crosspoint, spatial and spectral information are

"The opposite slope sity condition is described here as existing statically, across an edge. It is a
spatial comp)arison oIf soectral inf.rnr.ion. A comparison of spectral information in tilme is equivalent.

S.- Stich a temporal oppusite slope s',or condition would work as follows: An eye could sweep across
art cde-, and the spect'al ntorriyut,•n before and after the movement could be corpared. Similarly,
there is a temporal equivalent of t; e. crosspsotnt. Consequences of these isomorphic computations in
the temporal doinain will not be ewrjloir(.A here.

5
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hopelessly intertwined. We do not cast aside the crosspoint. though. It will play a vital role

in correcting for the spectral content of the illuminant.

4.0 Spectral Normalization

For the opposite slope sign test to find material edges successfully, it is necessary

for the measured spectral intensitiks to be normalized. That is, these samples must be

transformed to what they would have been under a spectrally flat ("white") iliuminant.

Clearly if no correction is applied, then the stronger spectral skew of an illuminant may

not only reduce the number of observed opposite slope sign pairs, but more seriously, may

transform pairs having the same slope sign into pairs that are seen as having an opposite

slope sign.

By contrast, the spectral crosspoint condition is insensitive to the spectral content

of the illuminant, as can be seen by inspecting panels A and C o! Fig. 2. (See Rubin

& Richards, 1982, for a more formal treatment.) We capitalize on this property of the

crosspoint to devise a theory of spectral normalization. Once the image has been spectrally

normalized, it is as if the illuminant were white. The opposite slope sign condition will now

be able to find correctly a maximum number cf material changes.

Consider now a scene composed of a large number of randomly selected materials. For

each image region (simple closed curves defined by edges), take two samples of intensity

h, and /,\ at wavelengths X, and X,2. Each region will be associated with a spectral slope

sign, which is just the sign of the difference 1), - I/,. f the illuminant wz're white (same
photon flux at all wavelengths), we would expect to have roughly equal numbers of regions

of positive spectral slope and regions of negative spectral slope. rhis expectation is based

on two assumptions. The first is that there is a random collection of materiais in the scene.

The second is that materials in the world are such that a random collection of them will be

divided equally between positive and negative spectral slope.

As suggested above, normalization requires a collection of image regions that arises

from a random set of materials. What about using a// image regions? The set of all image

regions is not likely to represent a random collection of materials, because many materials

will recur in several image regions. For example, if a cast shadow cuts across a single

piece of material, that material will be twice represented, once for each side of the shadow

edge. A second example arises with )igment density changes. In a forest scene, all

leaves are composed of the same matei al (chlorophyll embedded in a cellulose base). A .

sensible normalization scheme would not take each leaf as a distinct patch of material;

minor variations in pigment density from leaf to leaf ought to be ignored.

6



RUBIN AND RICHARDS COLOR AND MATERIAL CATEGORIES

It seems clear, then, that not all image regions should participate in normalization.

Perhaps, a subset of image regions can be found that is more likely to represent a random

collection of materials. The spectral crosspoint offers a means of finding such a random

subset of regions. Suppose that instead of taking each image region as a distinct material,

we took only pairs of regions that have a spectral crosspoint on the edge between them.

We would be guaranteed that each pair of regions would correspond to distinct materials.

The pairs of different material regions found with the crosspoint will be the subset of image

regions that will be used for normalization.

"Our normalization scheme works like this: Recall that we expect the regions found by

the crosspoint to represent a random collection of materials. So we expect roughly the

same number of regions having positive spectral slope as negative. For the subset of image

regions defined by the crosspoint, tally the number having positive spectral slope and the

number having negative slope. If the numbers are approximately equal, our expectation has

been met; we can infer that the illuminant is white (spectrally flat). 7 Suppose to the contrary

that the number of regions of positive spectral slope exceeds the number of negative-slope

regions. Then we can infer that the illuminant is more intense at long wavelengths than

at short. (Positive spectral slope means greater intensity in the longer wavelength sample.)

Now multiplicatively scale one of the spectral samples. In the example here, we need to

multiply all long wavelength samples by some number less than one. Exactly which number?

The one that will fulfill our expectation of equal numbers of positive and negative spectral

slope. That is, multiply all long wavelength samples by some number (less than one) such

that half of the regions under consideration will have greater intensity in the modified long

wavelength sample than the short wavelength sample, and half, the reverse. For a large

"number of samples, the multiplicative constant of normalization can be calculated from

the mean value of the spectral slopes of all regions participating in crosspoints. See the

"algorithm for spectral normalization in Appendix 2.

This crosspoint normalization scheme has some useful properties. Each image region

used has the same potency in normalization, regardless of the size of the region. That is,

each pair of image regions (found with the crosspoint) maps to a pair of data points, one

for each region. This is good for two reasons. First, the scheme is independent of image

region areas. This is desirable since we would not want visual systems to treat an image of

a large blue thing and a small red thing differently from an image of a small blue thing and

?Note there must be some crosspoints for normalization to proceed. If there are no crosspoints,
there are no regions to consider. So although it is technically true that there are equal numbers
of positive-slope regions and negative-slope regions (namely, zero), we do not want to infer the
illuminant is white for two reasons. First, we have no information about any image region, and thus
it seems imprudent to goess blindly that the light is white. Second we have evidence that the scene
consists of a single material since it has no crosspoints. Normalization would bring about material
change assertions via the opposite slope sign condition, in contradiction to the evidence of uniformity
from the crosspoint.

7
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It is worth comparing our crosspoint normalization with Land's latest normalization

theory. Land's (1983) scheme involves comparing the image intensity of a target region
with that of a few hundred random locations in the image. In such a theory, the larger

an image region, the more random locations it will contain. Land's theory is therefore

area-based, while ours is independent of the particular sizes of image regions. Our theory
makes different predictions from Land's: we expect no effect on normalization from the sizes

of image regions, or from the lengths of image edge segments.

5.0 Choosing a Representation

Assume now that the image has been normalized using the spectral crosspoint

condition, as described in section 4. We next select a representation of spectral information
based on that rule. In particular, we seek a s~mple, con venient spectral representation of
materials that is in variant under shadow, highlight, surface orientation change, and pigment
density change.

For any region in the image, intensity can be measured at a long wavelength and at
a second, shorter wavelength. Call these two measurements of image intensity L and S,
respectively, for each image region. Suppose we'd like to represent the spectral character

of a region with a single number, namely some mapping of the pair (I., S). Furthermore, we
would like the mapping (L, S) to be invariant under the lawful changes. The recognition of
material differences would be easy in such a representation. A single material in its different
guises-fully lit, shadowed, having different densities of pigmentation, with different surface
orientations-would map ideally to a single point. If there were such a mapping, then
whenever two image regions mapped to distinct points, we would know they corresponded
to distinct miaterials.

The lawful edge types are unfortunately so diverse that there is no function giving us the
desired mapping. No single continuous function of (L, S) will '.,e invariant under multiplicative
(shadow), exponential (pigment density), and additive (highlight) changes. Material change,
then, cainnot be reduced to the problem of distinguishing two points in the range of some
function.

The problem isn't hopeless, however, for there is a continuous function invariant under
sonme of the lawful changes, namely the multiplicative ones (shadow and surface orientation
change). Consider again the two image intensity samples S and 1_ The quotient 1, will have
the identical value on both sides of a surface orientation change or a shadow edge. The-
simple quotient is, of course, not unique in remaining constant across an orientation edge. ..-

Many functions of the two samples L, and S have the same property. We will choose among
three simple functions having this property:

8
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Many functions of the two samples I, and S have the same property. We will choose among

three simple functions having this property:

s I, + 5 1,-+Sý
How can we select among these candidates? The function . takes image regions

into the unbounded interval (0, oo), while the other two functions take image intensities into

closed intervals. ( . maps intensities into [0, IJ; i maps into 1,I I.) The function ' will

be rejected, since any reasonable computational system will be better off using quantities

that fall within a closed interval, rather than those that could be arbitrarily large. To choose

between the two remaining candidate functions we consider the ease of discovering.material

changes in these two maps. In particular, how does the opposite slope sign condition appear

in each of the candidate mappings?

Given two image regions X and Y, let Y denote the function so that I(X) and

f(l ) are the values of the function F of regions X and Y, respective!y. Then for F, the

opposite slope sign condition is expressed by [.siyn(l,(X)- a) -- .•iin(i(Y)-- )]. (The reason

for this expression is that the function I" takes on the value I whenever L = S.)

Let G denote the function a common measure of contrast. This is a simple

1144 function that facilitates the computation of material cnange. The sign of C is the sign cf

the spectral slope of an image region. That is, [sign(G(X)) d ,4iyn(G(Y))] emerges as the

opposite slope (material change) condition.

We prefer. the function G to the F for our representation. Whereas to determine

material change with G requires only a sign check, with F, the system must maintain the

constant 1 and perform two subtractions. The particular choice of Y; or G, though, seems
not to be critical for the goals we have in mind.

Fioure 3 shows the interval i-1, I], the range of the function G. Two image regions

corresponding to lit and shadowed versions of the same material, or two different surface

orientations, will, by design of G, be mapped to the aame point. This is shown in Fig. 3a.

Two image rg0;ons of different pigm ient density have the same slope sign; hence, in the G
map, the corresponding pair of points cannot straddle the zero. The same holds for a pair

of points corresponding to a highlight and a neighboring matte region. The latter two edge

types are shown in the G mapping in Fig. 3b. If two image regions are mapped to points

straddling the zero (Fig. 3c), they arise from different materials.

To summarize, we sought a function of spectral information invariant over the lawlul

changes. That goal being impossible, we chose for two reasons. First, it is invariant

across shadows and surface orientation changes. Second, finding material changes with

the opposite slope sign condition is easy. The range of the function can be divided into

9
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How Edges Map into the
Spectral Representation

Shadowed Lit
region \, region

(A) I -s
1A 0 I L+S

Pigment density change

(B)
-I 0 I

Matefiol change

(C) , / ,
L -1 I

Figure 3 F.ow various proccsses appear in the spectral representation implied by the mapping T7.-
the range of which is [.1,11. a) Two image rcgions differing only in surface orientation or shadow map
to a single point. b) Two regions differing as matte and high!ighted, or as two different degrees of
pigmentation density, map to the same half of the range, i.e., they map to point3 having same-sign
coordinates. c) Only two different materials can map to points straddling the zero, i.e., to points of
different-sign coordinates.

two parts, (- 1,0) and (0, 1). Materials with albedoes of positive spectral slope sign will map

into the positive half of the range, and negative-sloping albedoes to the negative part of the

range.8

Finally, it's worth reiterating why we built our spectral representation around the

opposite slope sign condition, and not the spectral crosspoint. Spectral slope sign is an

invariant property of a material's albedo function.' The opposite slope sign condition can

be decomposed into sGparate meaningful statements about properties of two image regions:

The slope sign of one reg!on is positive, and that of the other, negative. We know something

about each region. The crosspoint, by contrast, hopelessly confounds spatial and spectral

information. Higher goals of co!or vision involve describing the properties of individual

image regions, and cannot be reached by the crosspoint alone.

"Many continuous maps share the same invariance. We selected our map on the basis of algorithmic
considerations. The particular choice is independent of the theory of finding material change edges.
"t'Since a material is defined as a kind of stuff, a single material can have different albedoes as pigment

density changies. What stays constant over these chnnges in density of pigment is spectral slope sign.

10
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Trichromatic Representations

S-M S-M L-M S-M
S(A)M (B) S +'M LM S',M

S>M>L

" I L-M L-M
S": l•L+M L-M

. ., L>M>S

N, +

Figu re 4 Steps in the construction of the trichromatic material representation. a) Two axes comparing
1. and Wt, and S and M samples, are joined orthogonally. Each quadrant is a material category.
Points in dilforent quadrants correspond to distinct materials. Points within one ouadrant may belong
to the same material; they are considpred equivalent in this representation. b) The line of unit slope
in the figure above represents the comparison between S and I, smnptes. Aodmng the unit slope line
divides the color space into six regions or "hextants." Points in different hextants ar,.e from different
materials. Note the hextants do not have equal areas.

6.0 Trichromacy: Finding More Material Changes

E ... Suppose we add a third spectral sample, call it M, to our original S and 1, samples.

Adding a third spectral sample will allow the detection of new kinds of material changes.'0

He•wver, more importantly, the number of basic material categories will be increased from

two to six.

In the two-wavelength-sample material representation, an image region is encoded

essentialy by the rank order of the spectral samples, or equivalently by the sign of the slope

of the line segment connecting the samples. Thus, given two wavelength measurements,

there are two types of material-negative slope and positivi slope. With three wavelength

samples, an image region is associated with threi slope signs-a slope between each pair

•- of samples (ShM, MI,, Sb). There are six po3sible rank orderings of the measurements

(3! = 6), and thus six possible basic material types. Any two regions that produce distinct

rank orderings of the wavelength samples will bring about ,ne or more opposite slope signs.

Any two such regions must therefore be distinct materialN.

As a first step in constructing the trichromatic material representation, we combine

slope information from two of the three pairs of samples. Arbitrarily, we bagin with SA,

""The additional number of material changes detected with each new spectral sample will drop
sharply after the third sample. The reason is that the albedoes of natural objects (in the visible range)"':" ,"'"-"are typically slow-changinq functions of wavelength (1-*rinov, 1971; Snodderly, 1979). Cohen (1964)

showed that three carefully chosen functions of wavelength captured over 99% of the albedo functions
"of Munsell chips.

: 11
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and LAI, combining the information in a two-dimensional space as shown in Fig. 4a. Image

regions are mapped to points in the square - I, I X 1 1, 1 , and a pair of points separated

by an axis (or both axes) correspond to two regions of different material, just as did a pair of

points straddling the zero in Fig. 3c. Any pair of points in a single quadrant may arise from a

single material. This is the sense in which quadrants represent material categories. Without

yet considering comparisons between S and I, samples, we already have a categorical
representation in Fig. 4a, in which in each quadrant corresponds to a material category.

Let's now examine the third pairing ol samples, S and L. What condit;on holding

between a pair of points in the preliminary representation of Fig. 4a corresponds to the

opposite slope sign condition between S and L,? It is easily shown that if a pair of

points straddles the line of unit slope, the points arise from materials with opposite (S and

I) slopes.'" Furthermore, not just the sign, but 'he continuus value •--• of the L to S

comparison is contained implicitly in the representation defined by ordered pairs(÷--, " .•)

that Fig. 4a illustrates.'"

The unit slope line in the SlM-1,M space therefore has special significance, and is

added to the representation as a third material change axis in Fig. 4b. A pair of points lying

across any of the three axes will correspond to distinct materials. Thus. each of the six

sectors of Fig. 4b corresponds to a material type, or equivalently, to a rank ordering of the

three samples. The particular rank ordering associated with each "hextant" is shown in Fig.

4b. Note the hextants of Fig. 4b do not have equal areas. The original pair of axes can be

joined in a skew fashion to allocate more or less area to the different material categories.

To summarize, image intensities are measured at S. .t% and I., normalized according

to the crosspoint normalization of section 4, and mapped to (1 . ". ) in a rectangular

coordinate system. initially creating four basic material types. A further subdivision into six

types can arise by using the line of unit slope as a third axis, dividing the region [_1I, I1'

into six regions, each corresponaung to a different maiterial type Points in different hexta its

arise from different materials, whereas points common to one hextant may arise from lawful

edge events occurring on a single material.

Algorithm aficionado.s should turn to Appendix 2. where we sketch a procedure for

spectral categorization based on the above theory.

'Tht line of unit slope ib iven by ,T his'is ecls• ivalent to10 , S ,l(/., .. 4 -- .•I M (fI.- -M),

of S I. Points above .iis unit sloDe Inc cot respond to I, >. S. points below to S .> i..
I- Given the values ( ... * I. we can compule the value of . Let q s;---" and it -. •

Then "

12
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7.0 Relation to Psychophysics and Neurophysiology

Our spectral repiesentation of material types is but an abstract model of biological

color vision. In our theory, certain terms are left undefined. We haven't described wh,,t the

"spectral samples- of the theory are. and we haven't said anything abc .t how materials are

encoded. How then can we assess its relevance? Two linking assumptions will gi;ide the

interpretation of our theory. First, in the discussion of the ps'ychology of color visirn, we

will argue that of the traditional color variables hue, saturation, and lightness. it is hue that

encode- material type Second. in the discussion of neurophysiology. we tae the small step

to identify the spectral samples of our theory with the relative stimulation of the three human

cone photopigments (or combinations thereof)."' Given this interpretation of our theory, it

turns out that doullbi opponent units found in color neurophysiology can be under ;tood as
performing the spectral crosspoint and/or the opposite slope sign computation.

7. 1 Psychologically Unique Primaries

Ewald Hering (1964) offered a psychological account of human color perception that

was baned on the notion of opponent processes. He observed that "redness and greenness,

or yello.vness and blueness are never simultane:usly evident in any colcr, but rather appear

to he mtitu.,lly ?ýclusive." This is a clear case of categorical perception. Reddish and

g(Jeenslt are mutualy exclusive hue categories, and if hue is encoding material properties,

then the two catoqorites will partition materials. See Fig. 5a. Similarly, bluish and yellowish

wvl partition materials See Fig. 5b. These two sets of mutually exclusive hue pairs divide

the color space into four regions, as in Fig. 5c, just as did our trichromatic color space (Fig.

4a).

Our claim that Hering's color quadrants correspond to our material categories is

prldiclive. we expect that shadows, surface orientation changes. and pigment density

chang,,, would only rarely cause perceived hue to change from reddish to greenish (or vice

versa). or from •,lhoi.h to bluish (or vice versa). As noted in Appendix I, highlights could

be trotblesome.

The fact th:'t there are four hue categcries supports the idea that trichromatic human

visinn uses two opposite slope sign checks, as in Fig. 4a, but not the third, as shown in

Fig 4lh (Goethe (18081, however, proposed a theory if color perception based on six

hue catbgories. which might correspond to the use of all three opposite slope sign checks.)

''Our oheory of crnnn;points and opposite slope signs was based on spectral samples at a single
waveltt•)Gtti [oio(qicmI mrisurrcnents of the spectrum are broadband. It turns out that broadband
samples cannot introduce crosspornts that are false targets. That is, a spectral crGo.point found with
broidlh,iri d sampltes•s :,ill ,1a reliable indicator of material change (Rubin & Richards, 1082, Appendix
"IV) The opposite slope sign condition may not be as robust; more work is needed to study the effects
of broadband sampling.

13.
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Opponent Color Theory
(A) (B) (C) Red

Red

9 C 8ui?~ Reftsh
ReddithI

Ua,'s uelleS 0 1U . _~ t YeP, .............

0 L7r

Flgu re 5 l;v•ritr'sjt no!,on, ofI .npD(nent color proresbs.1) aAll colors aIre eithor reddish or greenish,
t)ýjl neoGre t erth b) All culors are vither bluish or ye;lOwish ht- never both c) The two pairs of mutually

c(A.IwsI{{ J.VII• dt,V''I !ticJ cc'.o circle into foulr quaclrarits, similar to the trichromatic representation

Evidence from ,ntants (B~ornstein et al,. 1976) supports Hering's theory of four hue categories
as independent of language and culture. Pigeons also have categorical color perception

Unqu

(Wright & 1arominig. 1971), suggesting the computational scheme that we propose here Is

fundamental to color vision across species.
erin s notion cf oppt"onent color pr cesses implies four spe:inl hues. They are

• indicated in Fig. 5c. These huen., which Hering called psychological primaries, are the
bourndares that separate color categories. Primary red is that hue among the reddish hues
tha! i eparates the yellowish from the bluisho primary blue is that hue among tha t bluish

that splits the reddish from the greenish; and so on. These primary colors are unstable

in the sense that any deviation from them involves a change of color categories. Hering's

psychological primaries correspond to the axes of our trichromatic representation (Fig. 4a).

Just why these primaries have their particular locations in the spectrum is an interesting

evolutionary question not addressed here. One possibility is that a creature's material

boundaries are positioned in some way as to make the greatest number of discriminations

among materials encountered in its environment.b Interesting work has been thoro along

these lines. Snodderly (1979) attempted to relate the color vision of New World monkeys to

the spectral characteristics of their jungle habitat. Levine & MacNichol (1c82i and McFarland

p'Mlterial bourdaries can be changed in two ways. The wovelontth at which a photopigment captures
the .reatest pyrcentage se photons can be altered, or now "channels" can be created by combining
ehOtopluments. One sort of combiation of two specaral samples hee and p. is a rotation; that is, now
coord aiales (a res 0 -p , osit ion sit 0 1, .. ,. 0) can be created for some angle of rotation 0. The original
arid rotated coordinate systs wdin iot always aer ree about whnther two image regions satisfy thelon
otopiieslpe Oign condition. chab is, the two spectral coordinate systems differing only by a rotation

will make difletent material distinctions. An angle 0 can therefore be selected to maximize the number
of material changes detected.

14
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..& un (191 y"5) hinkc the I jhlo p topiinient characteristics of fishes to the spectral character

of hijht in tlhlitr t-flvironments.

In som, our spectral represtrntation of material categories is a two-dimensional spac',

in wh~ch each quadrant represents a material type, and the axes represent the boundaries

brtween categories. Ima(ic regi.ons that map to different quadrants necessarily arise from

distinct materials: image regions that map to the same quadrant may arise from a single

material Supposing that hue encodes material information, Hering's observation about

hunian (:color vision mnakeis sense: hues are divided into four fundamental categories by the

mutually exclusive pairs red-green and blue-yellow.

7.2 Land's Experiments

7.2. 1 Two-Color Projection

Edwin Land (1959a,b) conducted some remarkable experiments in two-color projection

of natural images. Some of the phenomena he reported can be understood in terms of our

"materialistic" theory of categorical color vision.

Land's paradigm was as follows. Two different black-and-white transparencies were

made of a colorful natural scene by means of long- and short-wavelength filters.' 5 The two

transparencies were called the long and short records, respectively. Corresponding regions

of the two records, in general, were of different grey values. The two records were projected

on a screen in register, the short record with short wavelength light, the long record with

long wavelength light. Surprisingly, the resulting image was richly colL.red and faithful to

the original still-life.

Land's (1959a,b) work was basically descriptive. He found a means of predicting the

hue name o, a region in the two-color reconstruction. The intensity of long-wavelength

light in the region was expressed as a fraction of the maximum long-wavelength intensity

in the entire image. The same was done for short-wavelength intensity, yielding a pair of

numbers (each between 0 and 1). This pair of numbers (fraction of maximum ,S', fraction of

maximum I,), plotted on log-log axes, yielded a coordinate system that Land used to relate

image intensity to perceived hue. Land's coordinate system (hereafter called "Landspace")

is shown in Fig. 6a.

We will now try to relate our current work to Land's findings. Whereas Land began with

some surprising experimental observations of color appearance, we took image intensity

""•The transparencies did not consist solely of black regions and white regions, but rather the full

range of grey values between black and white.

15
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equations as the starting point of our thoore•tcdl Investigation of the problem of discriminating

materials We will show how these two approaches dovetail.

Our argument below consists of four major points. First, we look at how the spectral

crosspoint appears in Landspace. Second. we propose that an absence of crosspoints

should cause a total failure of Landspace, and note the failure conditions already observed

for Landspace correspond to such an absence Accordingly. we make some predictions

for two-color proJection that conflict with predictions in the litlrature. Third, we note

the opposite slope sign condition is identical to the fundamental split between wa n and

cool color categories in Landspace. Finally. we zuggest a straightforward extension of

our crosspoint normalization theory that would account for a peculiar result in two-color

projection.

7.2.2 The Spectral Crosspoint in Landspace

In general, the light source for a scene will not be white. (A white source is one that

emits the same flux of photons at each wavelength.) Suppose we take two spectral samples

of image intensity S and L. Spectral normalization is any procedure that transforms S and

I, into new values S" and IV, where the latter me-isurements would have been obtained had

the illuminant been white.

Land's normalization is (S', LO) 9 , , where Si., and L,, are the greatest

intensities measured in the S and L samples throughout the image.

Our theory of normalization is based on the spectral crosspoint, as discussed in section

4. To relate our current work to Land's experiments, we must ask how spectral crosspoints

appear in Landspace. We claim that a crosspoint corresponds to a pair of puints In

Landspace that form a line segment of negative slope (in Landspace). To avoid confusion,

we will refer to the slope of line segments in Lands.pace as "Landslope," as distinguished

from spectral slope in plots of intensity versus wavelength as discussed earlier in the paper.

(Landslope, then, is a function of a pair of regions, whereas spectral slope is a property of

a single region.) Our claim, again, is that a spectral crosspoint corresponds in Landspace

to a pair of points of negative Landslope. The proof follows.

Suppose there is a crosspoint between regions X and Y. Then, say, Sx > S"y and

I,x < Ly. Does the crosspoint imply some sort of relationship among the Landspace

coordinates for X and Y', (,'S , I.*.) and (S; , I.; )? It's easy to see from the definition of

Landspace coordinates that S. > S;- and I-,• < I.;. Now Landslope is given by I., I . ...

so the Landslope of crosspoint regions X and Y is negative. (Note the assignment of S" to

the abscissa is irrelevant to the result.)

16
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[-andspace and Some Achromatic Loci

() C-(B)'1 0

.01 r.I 01

001. .001-0.001 .01 01 .0.001 .01 0.1 10
I 5 Smax 51 5 max

* ~(C) 1.0 -.--..-- ()1.

L 0.1 1L0.1 .0

L max Lmox 0

.01- .01-

.00, .001
.001 .01 0.1 1.0 .001 .01 0.1 1.0
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Figure 6 Landspace anid some of its achromatic loci, as discovered by Land (1959a). ALads
coordinate system (adapted from Fig. 1 of Land, 1959b) that relates perceived hue to the fraction of
maximum long- and short-wavelength light (expressed on log-log axes). This coordinate system we
call "Landspace.' 1B) Image regions corresnond to a line of unit Landslope. Such an image (as well
as the next two) resolls in a monochromatic percept. (This is produced by placing identical records
in the lonrg- and short-wavelength projectors.) C) A line of zero slope. (This is created by removing
the record from the tonq-wavelength projector.) D) A line of slope - 1. (One record is placed in the
short-wavelength projector, and its photographic negative is placed in the long-wavelength projector.)

* 7.2.3 Failures of Landspace

Landspace is a way of predicting the perceived hue of a region given the ratio of its
intensity to the maximum intensity, at long and short wavelengths. This predictive? scheme

/ is successful for two-color projection of natural images. Land noticed, however, that for

- - certain contrived imaaes, his coordinate system failed totally. These images were seen
as achromatic (or monochromatic). What did these con.,octed failure conditions have in

17
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common? Land (1959a) suspected that "any arrangement which yielded points falling on

a straight line [in Landspace], or even on a simple smooth curve, would be colorless."

[Judd (1960) formalized Land's results on failure conditions.] We will show that the failure

conditions Land has discovered correspond to situations in which our theory is unable to

make any material distinctions. Furthermore, we will show our theory predicts stricter failure

conditions than does Land in his conjecture."

Figures 8bc,d depict three concocted situations that Land found [and Judd (1960)

verified] to cause a breakdown of Landspace. In figures 6b and 6c, the failure loci are

straight lines of non-negative Landslope. Notice that for such loci, there can be no spectral

crosspoints, since crosspoints correspond to point-pairs of negative Landslope.

Our normalization scheme, re-cast in Landspace, calls for inspection of all point-pairs

of negative Landslope, sir.ce this subset of points is more likely to arise from a random set of

materials than the totality of points. So a visual system using our normalization procedure,

finding no point-pairs of negative Landslope (no crosspoints), would fairly conclude that

there are no material changes and hence only a single material is present. A monochromatic

(or achromatic) percept is an apt result, then, for a system that encodes material ,type by

hue.

Consider next a collinear collection of points of negative Landslope In Landspace.

Normalization can proceed according to our scheme, since spectral crosspoints are avail-

able. Thus we disagree with Land's (1959a) conjecture that all collinear sets of points will

be failures. We predict the locus shown in Fig. 7a will yield a range of hues. Only collinear

sets of positive Landslope will fail.

There is one soecial exception to our prediction that collinear loci of negative Landslope

will produce chromatic percepts. A set of points of Landslope -I (Fig. 6d) corresponds to

an isoluminance Image. Such an image has no luminance edges, and has long been known

to disrupt vision .(Evans, 1948). We have argued elsewhere (Rubin & Richards, 1 82) that

crosspoints are only meaningful across edges, and hence should only be sought across

luminance discontinuities. Thus the isoluminance condition (the locuz. of Landsl~pe -1)

implies an absence of crosspoints and a failure of normalization, leading to an ach omatic

percept.

We turn next to Land's conjecture that curved loci in Landspace will yield achr matic

percepts."7 We believe this is an overgeneralization. We predict, along with Land, th t the

"'Land's conjecture (that smooth one-dimensional loci in Landspace will be seen as achromatic)
is problematic. It seems difficult to legislate whether a collection of points in a plane constitutes a
curvilinear arrangement or defines an area. A smooth curve can be drawn through any collection of
points in a plane.
"7A line in Landspace does not have absolute significance anyway, since linehood depends on the

choice of axes. For example, a line in Landspace with log-log axes will not be a line with linear or
power axes.
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Predictions

(A) Many Hues (B) Fai;ure (C) Many Hues
1.0 * 1.0 . 1.0

00

L.I 0.1 " 0.1- %
I ..- 0l•I

S0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0

'SIS SIS SS+'•, " . + ltw allI m ax

FIgue 7 Predictions of our theory that conflict with Land's conject :re that all one-dirmensional loci
in Landspace will yield achromatic (monochromatic) percepts. A) A linear locus of negative Landslope

1- ). B) A smooth locus of points without point-pairs of negative Landslope should be a failure
condition. C) A smooth locus of points that has point-pairs of negative Landslorie should produce a
ranqe of huet

non-linear locus of points in Landapace shown in Fig. 7b, sinc It contains no point,-pairs of

"negative Landslope (no crosspoints), will be achromatic. In contrast, the one-dimensional

locus of F-g. 7c has point-pairs of negative Landslope, and should yield a range of hues.

To sum up, we have suggested that failure conditions of two-color projection occur

when there are no spectral crosspoints. That is, Land failures should c -ur if there are no

(or too few) point-pairs of negative Landslope. Our predicted range of failure conditions Is

therefore narrower than Land's. Furthermore, Land's account of failures is purely descriptive;

ours is explanatory (via the theory of material changes).

7.2.4 Opposite Slope Sign and Landspace

We have argued that the opposite slope sign condition (between two regions) is strong

grounds for in ,erring the two regions are composed of different materials. Can this condition

be recast in L ndspace? The answer is yes: twc regions in the opposite slope sign relation

map to two po nts straddling the line of unit Landslope in Landspace.U8

The argument is as follows. Image regions X and Y satisfy the opposite slope sign
/"

""Land's early work relied on two spectral samples. Thus there is only one opposite slope sign
condition to worry about, as shown in Fig. 5. Our trichromatic theory, sketched in Fig. 6, is not
a.,p icable to Land's work.
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condition if normalized image intensities" obey the following: I.ý > Sý and ,, < .3, ...

where I./, denotes the normalized intensity in the longwave sample o, region X, and so

on. But the last condition indicates that (, ,I.) lies above the line of unit Landslope

in Landspace (given the abscissa marks S* values), and (S;, I.;.) lies below. If the Land

normalization is correct, then we have shown that two regions in an opposite slope sign

condition map to a pair of points in Landspace straddling the line of unit Landslope. (For

many complex natural images. Land's normalization scheme and ours could yield simitar

results. That is why we can accept Land's scheme as approximately correct.)

Examine again Land's results shown in Fig. 6a. Land observed that the hues appearing

above the line of unit Landslope are all "warm," and those falling below are "cool." (Wilson

& Brocklebank [19601. in a study of two-color projection phenomena, noted that although

hue, saturation, and lightness were not precisely preserved in the two-color reconstruction

of the original still-life, at least the warm/cool aspect of hue was invariant.) The distinction

between warm and cool colors is certainly the most fundamental fact of categorical hue

perception. To sum up, given that Land's normalization has been successful, different

materials (as discovered by the opposite slope sign criterion) map in Landspace to two

points straddlinc the line of unit Landslope (and vice versa). In turn, two points straddling

the unit slope line correspond to two qualitatively distinct hues, one warm and one cool.

This observation suppoits our claim that hue is encoding information about differences in

material. /

7.2.5 Doubling the Record

Land discovered that if he modified the two-color paradigm by placing a second

long-wave record. say, in the long-wave projector, perception is not substantially changed.

How does this transformation alter Landspace coordinates? The longwave coordinates of

Landspace are squared (and hence reduced since Landspace coordinates are between zero

and unity). The shortwave coordinates are unchanged.

Notice that to the extent that this "doubling the record" manipulation leaves perceived

hue unchanged, Landspace has failed. Landspace was intended to allow predictions of

perceived hue for a given pair of filters. But a successful prediction for the normal two-color

set-up will be unsuccessful for the doubled record. For example, in the normal set-up, the

line of greys is the line of unit slpe; when the record is doubled and perception remains

the same. the line of greys shifts to some curved locus (or a line of Landslope two on

log-log axes). The perception of hue therefore depends not only on the two filters, but the

distribution of values in Landspace as well.
"'Recall that in order for the opposite slope sign to reliably indicate material changes, the illuminant

must be white, or equivalently, the.image must be normalized.
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" -How does the doubling-the-record transformation affect our normalization scheme?

Crosspoints are preserved, since doubling the record preserves ordinal relations among the

S measurements and among the I.

Recall that the premise of our normalization theory was that given a random collection

"of materials under white light, the median spectral slope would be zero. Suppose we divided

he random collection into two subgroups, one of light materials (high average albedo over

wavelength) and one of dark. It seems that our fundamental premise would also be true

* of each of the subgroups. That is, it seems reasonable to guess that the median spectral

slope of a random assortment of dark materials would be zero, and similarly for the light

collection."0 We suggest that our normalization could proceed independently for several

subgroups of image intensities, all members of a subgroup sharing similar lightness values.

Such an extension of our normalization scheme would tolerate some "bending" of. the grey

locus, as occurs when a record is doubled.

It's worth asking whether any natural situations cry out for normalization that varies

"with intensity, such as we propose. That is, where might we expect the spectral character

of illumination to vary with intensity? Aquatic environments come to mind. At a given depth,

light coming from blow has lower intensity and lower peak wavelength titan does light

coming from above (Levine & MacNichol, 1982; McFarland & Munz, 1975a). Two distinct

/ Landspaces could be set up, one for the lower visual hemifield, another for the upper.

In terrestrial habitats, it might be desirable to normalize shadowed (low intensity) regions

separately from fully lit (high intensity) regions in the same image. This would be the case

* if the diffuse light were bluer than the direct light due to scatter.2 1

7.3 Neurophysiological Operators

How might operators be constructed that would detect crosspoints and the opposite

slope sign condition? Consider cosspoints first. Suppose we would like to detect

crosspoints of the sort shown in Fig. 8a. Two spectral samples, M and I,, are taken on

both sides X and Y of an edge. Figure 8b shows schematically such a detector. Intensity

values of the i, samples are compared across the edge. We define (+) as the difference

"between the I. value of side Y from the 1, value of side X, if that value is positive, and zero

otherwise. Similarly, the M samples are compared across the edge. Here the Al value of

side X is subtracted from that of side Y (again with a zero minimum). The results of the

-. ="Of course, this assumption can be tested. If dark materials, say, tended to be reddish, our
"-- assumption would be incorrect and require modification.

"'Note that in this case, the grey world assumption of section 3.4 is inappropriate.
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SCrosspoint Opposite srope..

M L M I

Wavelength Wavelength
(B3) • L+ý (M E e (E)[• L+ M-) .

B1 }-Edge (E)L- M+ IEdge

1) Arithmetic operation 1) Arithmetic operation
over space over wavelength

2) Logical operation 2) Logical operation
over wavelength over space

((F L+ (F)L-~L M- •i "

M ÷M + :

M- L31111]
Helpful subunits Helpful subunits

(not found) (Wiesel and Hubel, 1966)

Figure 8 -Detecting, crosspoint. a~nd-th(, "p-oý,ito slope sign condition.-a) Thle-sp~c'tral cro~sspoint ":,-;

to i.e detected. b) A schematic crosspoint detector. Note a logical spectral operation follows an 5
arithmine!ic spatia; upcrotion. c) Useful intermediate unis for crosspoint devoection are sketched. Split
bar slmpnf:d comfigirnhtiin indicates a spalmal compari:on. Comparistns are made wthin spectral
chanrlt::. Outplits of th•em? intcrmindiates can the;, be combined logically. d) 'rhe opposite slope sigln
Condihion to be det~cccl. e) A schvrnatic detector for the opposite slope sign. Note a logical spatial
op( .'rd, ,lpr follows an irtlinietic sptctral operation. I) Useful intermc(liate units for oprosite slope sign
detelction. Spectral comparisons ,rc made in a single spatial region. Outputs of these intermediates
cam i'hon be combined legically.
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-".. two arithmetical operations (<•) and (M-r obndloial ihaand • are combined logically with an AND .22

Next consider the detection of opposite slope signs as shown in Fig. 8d. On each

side of the edge, a spectral comparison must be made. The arithmetic operation (I.V M4)

denotes the value of the tl sample subtracted from that of the 1, sample on one side of the
edge. This operation has a minimum value of zero. The spectral comparison (1,. A/-) is

•then ANDed with the similarly defined comparison (1, A/4 ) on the opposite of the edge

to create the opposite slope sign detector shown in Fig. 8e.

It's worth noting that for the crosspoint detector, two spatial, arithmetic operations are
logically combined across wavelength samples. For the opposite slope sign detector, two

spectral, arithmetic operations are combined logically across space (across an edge)

Both detectors (Figs. 8b and 8e) superficially rer'emble double.opponent units described
in many species (Daw, 1972; Michael, 1978a; Livingstone & Hubel, 1984). That is, both

detectors have two spatial fields-one that receives excitatory connections from one spectral

sample, and inhibitory inputs from another spectral sample, and a second spatial field
receiving the opposite spectral inputs. Neurophysiological tests have not yet been sufficiently

detailed to distinguish whether double opponent units are computing spectral crosspoints,

or opposite slope signs, o, neither.

Useful intermediate units for crosspoint detectors are shown in Fig. 8c. The line through
the bar-shaped configuration indicates a comparison across space. Comparisons are
within spectral channels; outputs of these intermediates can be comLined logically to build

crosspoint detectors. This sort of intermediate unit-spatial comparisons in isolated spectral

channels-has only been reported once (Michael, 1978b), apparent,ly ,ithout replication.

Figure 8f depicts useful intermediate units for opposite slope sign detection. Spectral

- - comparisons are made within a singl a spatia! region. Units of this type-spectrally opponent

but spatially undifferentiated-have been described by physiologists recording from monkey
lateral geniculate nucleus (Weisel & Hubel, 1966; Kruger, 1977; Michael, 1978b). This

evidence suggests that the double-.cpponent units described in primate V1 might be

performing an opposite slope sign computation. Detailed color neurophysiology is needed

to test this notion.

"".Strictly speaking, the results of the two arithmetical operations must be converted to 0 or I
before being logically combined. Alternatively, the results of the arithmetical operations-the modified
subtrac ions--could be multiplhed together. A non-zero product imreplies a crosspoint.
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8.0 Summary

Our thcory of colr vision presents two types of operators-the spectral crosspoint for

normalization and the opposite slope sign-which suffice in most cases to normalize for the

'lluminant and to caigorize the albedoes in the scene. Our scheme should differentiate

oetween the common natural pigments (ch!orophyllk, xanthcphylls and flavanoids), for

e, ample, but not between the density variations of any one of these pigments. The theory

does not address this latter problem-namely how we appreciate tie fine changes in the

grain of a piece of teakwood. A quantitative color visoun sy:tem, of greater complexity than

the qualitative computations described here, will be needed for such fine discriminations.

Categorical color vision is simply an inexpensive method for making rapid and reliable

coarse judgments about materials.
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Appendix 1: Lawful Processes

This appendix shows that image edges that arise from 1) change in surface orienta 'ion,

2) pigment density variations, 3) shadows and 4) highlights all preserve the ordinal relations

../ of image intensities across that edge, and hence cannot cause the opposite slope sign

condition.

1.0 Surface Orientation Change

Let X and Y be regions on either side of an edge due solely to a surface orientation

discontinuity. Then the image intensities (as functions of wavelength) lx(X) and Iy(X),

measured in X and Y, respectively, are related multiplicatively. That is, Ix(X) - oly() for

some constant ,t (Rubin & Richards, 1982; Horn & Sjoberg, 1979). Two functions differing

only by a multiplicative constant have identical ordinality.

2.0 Pigment Density Variation

Suppose X and Y are two regions on a planar piece of a single material that differ

V) ' only in pigment density. Then if the albedo (as a function of wavelength) of region X is p(x),

the albedo of Y can be approximated23 by pb(x), where b is a constant related to pigmiLnt

density (Rubin & Richards, 1982; Wyszecki & Stiles, 1967).

The light measured from regions X and Y is the product of the albedoes of X and Y

with the radiant intensity of the illuminant. Since X and Y are assumed coplanar (recall that

pigment density change is stipulated as the sole cause of the edge), and the illumination is

the same for both, then any difference between measured intensities from the two regions

will be due to a difference in albedo functions. But the a!bedo functions are reiated by

an exponential constant, and two functions so related have identical ordinality. Therefore,

image intensities across a pigment density change will have identical ordinality. [Examples

of this relation for natural pigments can be seen in Krinov (1971), Francis & Clydesdale

(1975) or Snodderly (1979).]

3.0 Shadow

Consider an edge separating a lit region from a shaded one. Both lit and shaded

regions reflect diffuse illumination toward the viewer. The lit region, in addition, reflects a
S.-.:This exponential relation presumes that the embedding material is svectrally neutral. If the

- embedding layer reflects different wavelengthls unequally, Ilion change in pigment density has a more
complex description. In particular, pigment oensity changes can mimic material changes.
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dire.ct source. if /j,( N and i* ) are iniaiie inte2nsities (as functions of wavelength )i) from

lit oind S ailedj ri 'gions. rospoctiveli, then:

where I. X ). and IX , . are thle diffuise andl direct components of illumination, and

pt )) Characterizes the athedo of the material.

By inspoc lion of equations (1). it is clear that ordinality can be violated in the case

of shadow. Thfat is. a false tairget is possibl-e The visual world. fortunately, offers certain

regularities. The~re is usually some close relatlion between djiffuse and direct illumination

(Goral et &a, 1064) This is not surprising. since diffuse light results from diverse, random

reflections of tho direct light from a variety of materials in the scene. An assumption will

be mado Ithat this is asually the case: a visual system can presume that diffuse light h,-3

tli3 saine spectral character as; the direct light That is.I,, .()At,(>) for soi ,e
constant A-. I his we call the "grey world" assumption (see Section 3 1). because I is

implied by the statement that all thle albedoes of a scene will average to grey. Anecd.- tal

datal support theý grey world assumption Hailman (1979) measured spectral irradia ice

functions in a pine woods in a sunny area and in nearby shade. The functions are striki, gly

similar in shape, and are shown in Fig. 9.

Invoking the grey world as~sumnption, equations (1) become:

Note that the lit o~nd shaded regions now give rise to multiplicatively related image

itstyfUnlctIon3 Ordinality will therefore be preserved.

4.0 Highlights

The~ ~ ~~1 anl,;o ihi~t is slightly more complex The following equations (Rubin A

Richards. 1082. eIquations 1.1-) express the image intensities to be found in a highlight and

neighboring matte region:

whoire and 1,,,, 1, and f are the images intensities (as functions of wavelength) in
matte and highlighted regiontit. and (0t~. 1) is a constant that indicates to what extent the

SUifice is mirrorlike (e I describes a perfect mirror). (S,,e Richard.,,, Rub'in& Hoffman.
1982, for a more extended treatment.)
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Shadow and Wavelength
I I I I I I I I

Lit

Shadow
}-'J - Io

-: ' I I I I I I 1

Wavelength

Figure 9 Measurements of the spectral irradiance functions of direct sunlijhl and nee'rby shade in a
Florida pine woods, adapted from Hailman (1979), Fig. 74a. On the ordinate is the logarithm of photon
flux. The abscissa shows wavelength.

The equations express the fact that b,'th highlighted and matte regions reflect both direct

and diffuse light. In addition, the higt light, acting as a partial mirror, reflects the direct light.

Applying the grey world assumption, equations (3) become:

,,,.(t X) =((I f k)A ....*(X)p()

which reduces to

(I(5)
Ih, ihtP) .... (X)I/ * (I -- 6)(I + k)p(X)]

By inspecting equations (5), it can be seen that highlights can produce a spurious

violation in ordinality. Assume now that the image has been normalized with respect to the

color of the illuminant. Normalization is any scheme that allows recovery of the spectral

character of the illuminant. (Such a computation is presented in section 4.) Normalization

is equivalent to a transtcrmation of the image intensities to what they would have been had

the illuminant been white; it allows us to set ld,,,(X) -1, where if is some constbnt.

Both equations (5) can now be rewritten substituting if for I...t(,), yie!ding
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(((6)It, it, I,•,x it• ht Nl •( ~ )

With the two azsumptions of grey world and spectral normalization, highlights will not

produce '-olations in ordinality. This can be seen in equations (6). where the image intensity

finction of the highlghted region is simply related to the image intensity function of the

neighboring matte region. The intensity in the matte region is multiplied by a constant

(I .%). and then a constant function (1(X) ,.,) is added. These two operations preserve

ordnality: hence no opposite slopes will ari, given our a5stImptions.

28
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Appendix 2:
Algorithm for Spectral Normalization

and Material Categorization

Given a full-color image of a scene lit by an unknown illuminant, and a way of finding

edeps and regions, regions can be assigned to one of a small number of material categories.
Regions in different C:ategoones are made of different materials. An algorithm for categorizing

-mater•al; is sketched below. The first step is io correct for colored illumination; the second

is to categorize.
V.

In the Beginning

The original full-color image can be viewed thro Jgh three spectral filters, yielding three
distinct maps of image intensity, say IR, G, and B. See Fig. 10a. These three maps of image
intensity we call "spectral images." The number of filters, or their spectral characteristics,
should not be important. All that matters is that the filters yield independent measurements.

Spectral Normalization

First, apply an edge operator to the image. The particular edge operator should not be
crucial. Assume the edge operator produces a closed set of edges. 21 Next, edge segments

-,/- must be made explicit. See Fig. 10b. This involves dnderstanding vertices. For example, a

T-vertex terminates the edge that is the leg, but not the edge that's the c.rossbar. Identifying

- -- edge segments is important because we will iterate t4rough a list of them.

For each edge segment, two narrow strips must be defined, one on each side. Call

the strips X and Y. (Understanding vertices is important because the strips must be free of

edges.) See Fig. 10c.

Average the intensity values of each of the spectral images It, G, and 1) in both the X

and Y strips. The output of this step is six values Itx, Itr, Gx, Gy, Ix, and 11y.

For each edge segment, check for two types of crosspoint, RiG, and 11(;.2 5 (The

conditions are (Rlx -- Ity)(Gx - Gy) < 0 and (G.1< - GY;)(ix -- Ily) < 0, respectively.) Note

the possibility of a third crosspoint involving the I? and I? samples.

Suppose an image has n crosspoint edge segments. For each crosspoint, record

"'•lf algorithim for edge detection does not produce closed edges, then regions must somehow be
identified usinq edge fragments.
"'The It and '; samples can yield crosspoints, and independently, so can the 1 and G samples. The

G sample could just as easily be taken as the photopic luminosity function.
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Full-color image Spectral images

(B) Edges, vertices
are made explicit

(C) Edge strips are
= -- - defined; each strip

yields a point in the
___________________ spectral space below

R-G
R+G

(D) Uneven distribution
* ** *8- G of points in a spectral

0 B+G space

Figure 10 a) The full-color inage is run through three spectral filters It, 6., and 11. b) Edgesegments
fiave been found ind maido Cxplicit. Thit; iiflaclO shown live cdgo %egineniti, Vertices have been found,
arnd are here miarked with largle black dots1. cj On either side of ore of theC u(icrls, narrow strips Y and
Y arc di lined. No edge secgummen?~; should be in thle strip~s. hIntensity averag~e-, will be takr'ii in the three
specti at imotloe in both of the~ :;trips. yieding -w, mneasureme~nts. This is dr'mrip for each edge segment
in tile iniage. d) MeZISureieiits taken troin strips about echd edge nrrap to points in a spe-ctral space
delscd by axes as labeled. Normailizationl consiSts Of Multiplying It amid 11 vaslues by factors such that
equal numnbems uf points will be found in each quadrant.
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spectral information about the two abutting strips. In particular, store two color contrast

values per region.

-It, - (,i, r, ,,/i -; -- _' • +c i =z 1,...,2n, (8)

where i is an index ranging over the. 2n edge strips defined around n crosspoints. This

particular form of ratio is useful because its value must lie in the closed interval [-1, 1]. The

spectral information recorded can be considered as 2n points in a two-dimensional spectral
space (with axes of y• • -:

a (O; and shown in Fig. lOd. (See also Fig. 4a.)

Let L be the number of points in the upper halfplane of the spectral space (Fig. lOd),

and L be the number of points in the left half-plane. Under a white illuminant, we'd expect

a random assortment of materials to yield U _ L _ n; that is, points should be roughly

equally distributed among the quadrants of the spectral space.

If the 2n points are not divided equally among the quadrants of the spectral space, we

must seek normalization constants a and j) that satisfy the following criterion:

Al EDIAN~ M---- __ MEDIAN[.,: 0 (9)..., .[~~~a~lti-+ G i i_ ..... +, [ + G i = ... =

For a large enough number of image regions, we can take

I - = R G 8 ?-7- - (10)

I[ + Ura + ?JG

where Vtc. and CI)G are means of the sets of measurements (8):

On~R-G 2n
"-RG = In IG OBG = E ,+G- (11)

The values of a and P? in (10) will provide a correct normalization (i.e., normalization

criterion (9) will hold) given some simple statistical conditions.26

The correctness of the normalization constants a and 13 can easily be checked by

verifying that criterion (9) holds. If not, the values of a and 13 can be adjusted incrementally

in an iterative procedure. The entire normalization algorithm is shown as a flowchart in Fig.
11.

Once correct values of the normalization constants are returned by the algorithm, the

three spectral images IR, G and I can be transformed into a set of normalized spectral

"fThere must be at least 12 independent crosspoint edges, and the mean and median of the set
of measurements { '. " }must approach the same value as i i-# oo, and similarly for the set of
measurements { ,:. }. (See Siegel, 1956.)

31

/*-. 
..



IIUUVIN AND IIICIIARDS COI OR AND MATERIAL CAUrGORIES

NORMALIZATION ALGORITHM

Begin with Points
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2" R -Gi
-1/2n I R.G

*1:1 R G
Set a =

I + 1/2n 2nRIG

2n B:
i -1/2n I ,G

1i8 l G
Set W:

and recom ut~e and U e o p t

I yu e 1 Nomlzt'nF wcant. nlr wetuh pont satttid in Xpcrlsae and en dwt

to~ ~ LxI'c h Iiia I nhre mpe nt ao C.re 
______________

I 

F-3 

e



RU BIN AND RICHARDS COLOR AND MATERIAL CATEGORIES

Figu re 12 a) The three spectral images H, G, and 8 are normalized using the multiplicative constants
produced by the procedure shown in Fig. 11. The normalized spectral intensity maps are It', G%, and

.4 flW. b) The regions of the image sketched in Fig. 10b labeled with material categories. Each region is
assigned one of four vossible ordinal doublets.

;mages. All values in the It image are multiplied by a, yielding IV. (The asterisk superscript

denotes normalized intensity; see section 7.2.2.) Similarly, I' j311. Spectral image G is

unchanged: G W. See Fig. 12a.

Spectral Categories

Suppose that when closed edge segments were found that image regions were made
expliczit. For each region i, measure the average values of the normalized spectral images.
yielding the triplet (IG1).A triplet of numbers yields one obvious pair of ordinal
relations:

where q'ignl?; is "+" if G* > It*, and "-" otherwise.

Each region can therefore be assigned to one of four material categories: (f-,-h,(.

(--+ , (, This is shown in Fig. 12b. Two regions that are in different categories a e
composed of distinct materials.

Note that a third ordinal relation is sometimes independent, the RC - II' compariso
If this relation is included, six spectial categories obtain.

Finally, note that white the algorithm described here is categorical, continuous infor-
mation has not been lost; it is still availah!c for more refined purposes. For eacth region i,

the continuous-valued coordinates

3.3
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should be useful.

/
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